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HEURISTIC RATIONAL MODELS IN SOCIAL NETWORKS

Ceyhun Eksin and Alejandro Ribeiro
Department of Electrical and Systems Engineering, University of Pennsylvania

ABSTRACT

A network of distributed agents wants to minimize a global cost
given by a sum of local terms involving nonlinear functions of self and
neighboring variables. Agents update their variables at random times
by observing the values of neighboring agents and applying a random
heuristic rule intent on minimizing the local cost with respect to their
own variables. The heuristic rules are rational in that their average result
is the actual optimal action with respect to the given values of neigh-
boring variables. By identifying heuristic rational optimization with
stochastic coordinate descent it is shown that all agents visit a neigh-
borhood of the optimal cost infinitely often with probability 1. An ex-
ponential probability bound on the worst deviation from optimality be-
tween visits to near optimal operating points is also derived. Commonly
used models of consensus and opinion propagation in social networks
are casted in the language of heuristic rational optimization. Numeri-
cal results for opinion propagation in social networks are presented to
corroborate analytical results.

Index Terms— Distributed network optimization, social networks.

1. INTRODUCTION

Social network scenarios, e.g. consensus, opinion propagation or voting
models, entail set of agents with different individual interests and limited
information gathering capabilities. A central question in social networks
concerns reflections of selfish behavior and communication structure on
welfare of the entire society and whether such behavior leads to pros-
perous society given the underlying connectivity. Existing work frames
this question as a distributed network optimization problem where global
objective –welfare of the society– is manipulated by the agents through
iterative application of local optimization rules that update local vari-
ables relying on information received from neighboring agents. Main
challenges in formulating social network scenarios as distributed net-
work optimization problem are making realistic assumptions on local
optimization and update rules, connectivity structure and information
passing. While existing results question nonviable assumptions on up-
date rules [1], communication errors [2] and connectivity structure [3,4],
we challenge the assumption that local optimization rules are realized
error-free within the context of social networks.

We propose and study more realistic models whereby agents execute
actions that are optimal in an average sense only. We name these rules
and the agents that use them as heuristic rational, since we think of them
as the application of a heuristic rule that is intent on being optimal even
though it may not be so. We show that models commonly used to study
propagation of opinions in social networks [5–7] can be cast in the lan-
guage of heuristic rational optimization. We also study the behavior of
networks composed of heuristic rational agents and show that: (i) The
global network behavior visits a neighborhood of optimality infinitely
often. (ii) The probability of straying away from this neighborhood by
more than a given amount is exponentially bounded. These results can be
interpreted as an explanation for the emergence [cf. (i)] and sustenance
[cf. (ii)] of global network behavior that is close to optimal despite im-
perfect decision making of individual agents in social systems.

The paper begins by describing the induction of global behavior
through the minimization of a cost given by a sum of local terms in-
volving nonlinear functions of self and neighboring variables. At ran-
dom times, agents observe current values of their neighbors’ variables
and apply a heuristic rule with the intent of minimizing the global cost
with respect to the selection of their local variables. These heuristic
rules need not be optimal but we assume that they are so in expectation

(Section 2). We proceed to describe how opinion propagation [5] and
voter [6, 7] models in social networks can be interpreted as a heuristic
rational version of local averaging models [1] (Section 2.1). Because of
the randomness associated with heuristic rational rules we do not expect
convergence to optimal global behavior. Consequently, we characterize
the difference in the yield of optimal variables and the values achieved
by heuristic rational rules by showing that a neighborhood of optimality
is visited infinitely often with probability 1 (Theorem 1, Section 3). We
further show that between visits to optimality the probability of the gap
in the yield of agents’ variables exceeding a given value is bounded ex-
ponentially (Theorem 2, Section 4). Next, we present numerical results
for opinion propagation model in social networks (Section 5). We close
the paper with concluding remarks (Section 6).

2. LOCAL HEURISTIC RATIONAL OPTIMIZATION

Consider a network of N agents represented by the symmetric graph
G = (V,E) where vertices i ∈ V denote agents and edges (i, j) ∈ E
connections between them. Agent i can only interact with neighboring
nodes n(i) = {j : (j, i) ∈ E} that form an edge with her. We denote
as Ni := #(n(i)) the cardinality of the number of neighbors. Each of
the agents i ∈ V is associated with corresponding variable xi ∈ Rn
and a convex function f0i(xi). Each of the edges (i, j) ∈ E is affiliated
with a convex function fij(xi, xj) that depends on the agent variables
at the vertices of the given edge. To maintain symmetry we require that
functions fij(xi, xj) and fji(xj , xi) be equal,

fij(xi, xj) = fji(xj , xi), for all i, j ∈ n(i). (1)

Variables xi are also constrained to the convex set Xi in that allowable
values satisfy xi ∈ Xi ⊆ Rn. Define the vectors x := {xi}i∈V group-
ing all network variables and xn(i) := {xj}j∈n(i) containing the vari-
ables of all neighbors of i, and x−i := {xj}j 6=i referring to all variables
except xi. Further introduce the set X :=

∏
i∈V Xi to represent the

Cartesian product of sets Xi.
The function

fi(xi, xn(i)) := f0i(xi) +
∑
j∈n(i)

fij(xi, xj) (2)

represents a cost that agent i would like to make as small as possible
by proper selection of its variable xi ∈ Xi. Since this cost depends on
neighboring variables xn(i), it follows that xi and xj for j ∈ n(i) have
to be jointly chosen. But these neighboring variables are jointly chosen
with their respective neighbors, which depend on the values of their cor-
responding neighbors, and so on. It follows that as long as the network
is fully connected, cost minimization requires simultaneous selection of
all variables xi. This is not a plausible model of network behavior.

Alternatively, suppose that at random time t ∈ R+, agent i ob-
serves the values of neighboring variables xn(i)(t). Given the interest
in minimizing the local cost fi(xi, xn(i)) in (2), a rational action for
this agent is to update her variable by selecting the value that minimizes
fi(xi, xn(i)) given the observed values of neighboring variables,

x̃i(t) = argmin
xi∈Xi

fi
(
xi, xn(i)(t)

)
. (3)

Since the update in (3) is based on information that can be locally ac-
quired and is unilaterally executed by i it constitutes a possible model
for network optimization, which has indeed been used to model, e.g.,
the propagation of opinions in a social network; see [5] and Section 2.1.



However, it is not always accurate to assume that agents apply optimal
policies perfectly. In, e.g., social systems, agents apply heuristic rules in
their decision making which are prone to randomness and suboptimal-
ity. To model this type of network we introduce the concept of heuristic
rational actions as random actions that are optimal on average as we for-
mally define next.
Definition 1 Consider network agent i associated with variable xi and
denote as xn(i)(t) the values of neighboring variables at time t. We say
that a probabilistic rule xi(t) ∈ Xi is heuristic rational if and only if its
expectation is a rational action as defined in (3),

E
[
xi(t)

∣∣xn(i)(t)] = x̃i(t) = argmin
xi∈Xi

fi
(
xi, xn(i)(t)

)
. (4)

This paper considers network optimization models that consist of a ran-
dom activation rule that determines when agents modify their variables
and a heuristic rational rule that determines how the active agent updates
her local values. Activations are indexed by the non-negative integer
variable k ∈ N with k = 0 denoting the initial state. Variable k 6= 0 de-
notes the kth activation that occurs at time tk and involves, almost surely,
a unique agent i = ik modifying her local variable xi = xik . When an
activation occurs, variables xi(tk) stay unchanged for all agents i 6= ik
and are updated to xik (tk) for terminal ik. Update rules are restricted
to depend only on neighboring variables xn(ik)(tk) and are assumed
heuristic rational in the sense of Definition 1.

Summing up the local costs fi(xi, xn(i)) in (2) yields the global cost

f(x) :=
∑
i∈V

fi(xi, xn(i)) =
∑
i∈V

f0i(xi)+
∑

i∈V,j∈n(i)

fij(xi, xj), (5)

that measures the optimality of configuration x := {xi}i∈V from a
global perspective – as opposed to fi(xi, xn(i)) that measures the op-
timality of configuration xi from a local perspective. In particular, there
exist globally optimal configurations x∗ that achieve the minimum pos-
sible cost p∗ = f(x∗) given by

p∗ := min
x∈X

f(x) = min
x∈X

∑
i∈V

fi(xi, xn(i)). (6)

The goal of this paper is to compare the sequence of iterates x(tk) gener-
ated by recursive application of heuristic rational rules with the optimal
configuration x∗. More to the point, we define the stochastic process
{Fk}k∈N of optimality gaps with elements

Fk := f(x(tk))− p∗. (7)

Our results will establish that the optimality gap Fk achieves a small
value with probability 1 infinitely often (Theorem 1, Section 3). We
will also establish that the largest value achieved in each of these excur-
sions follows an exponential probability bound (Theorem 2, Section 4).
Before proceeding with the analysis, we discuss examples of network
optimization with heuristic rational agents in social networks.

2.1. Opinion Propagation
The propagation of opinions in a social network can be cast in the lan-
guage of heuristic rational optimization. In this context we interpret
xi ∈ [−1, 1] as the opinion of a social agent. Consider a social net-
work where a subset S of agents are stubborn and have fixed extreme
opinions xi = {−1, 1} for all i ∈ S while other agents are com-
pliant i.e. value agreement with friends with whom they are directly
connected [5]. We model the desire for agreement through the penalty
function fij(xi, xj) = (1/4)(xi − xj)

2. The resulting cost for dis-
agreement for agent i is fi(xi, xn(i)) = (1/4)

∑
j∈n(i)(xi − xj)

2 as
follows from (2) in which function f0i(xi) = 0. Through minimization
of this quadratic cost we have that the rational action, as defined by (3),
for agent i at time t is

x̃i(t) =
1

Ni

∑
j∈n(i)

xj(t). (8)

This action amounts to taking a local average of opinions in the net-
work [1]. A heuristic rational rule xi(t) randomizes x̃i(t) to account
for the fact that the average in (8) is not computed exactly but rather
guessed. The presumption in Definition 1 is that these guesses are cor-
rect on average in that E [xi(t)] = x̃i(t).

A more interesting example of heuristic rationality stems from the
observation that agents are not likely to consider opinions of all of their
neighbors at each decision but rather rely on interactions with random
subsets of friends. Accounting for the fact that interactions occur be-
tween a member of the network and subsets of her friends is the intent
of voter models [6, 7]. The model of opinion propagation in this case
replaces the average in (8) by the average of a random sample of friends

xi(t) =
1

#(ñi(t))

∑
j∈ñi(t)

xj(t), (9)

where ñi(t) ⊆ ni denotes the random interaction group at time t. If all
subsets of friends are equally likely to be chosen it follows that actions
x̃i(t) in (8) and actions xi(t) in (9) are such that E [xi(t)] = x̃i(t).
Thus, we can think of voter models [cf. (9), [6, 7]] as heuristic rational
rules for the local averaging model [cf. (8), [1]].

3. NEAR OPTIMALITY

The sequence of iterates x(tk) generated by recursive application of
heuristic rational rules is akin to a stochastic version of block coordi-
nate descent on the function f(x). In coordinate descent algorithms
minimization is attempted by alternation between descents on different
subsets of variables chosen according to a given rule [8, Ch. 2.7]. In
the case of heuristic rational optimization we can identify agents’ vari-
ables as coordinate blocks and random activation as the selection rule.
The structure of the local cost fi(xi, xn(i)) in (2) allows for the dis-
tributed implementation of block coordinate descent. Given this corre-
spondence, we present results that show convergence to a neighborhood
of the optimal configuration x∗, [cf. (6)] in some sense if the following
assumptions on the cost function f(x) and the random activation rule
are satisfied.

(A1) Strong convexity. The global cost f(x) is strongly convex in that
there exists a constant m > 0 such that for any pair of points x ∈ X and
y ∈ X it holds

f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
||y − x||2. (10)

(A2) Lipschitz gradients. Gradients of the global cost f(x) are Lips-
chitz in that there exists a constant M > 0 such that for any pair of
points x ∈ X and y ∈ X it holds

f(y) ≤ f(x) +∇f(x)T (y − x) + M

2
||y − x||2. (11)

(A3) Random activation. At any given time t, all agents are equally
likely to become active.
(A4) Bounded variance The mean square error of the heuristic rational
action xik (tk) with respect to the corresponding rational action x̃ik (tk)
is bounded [cf. (4)].

E
[
‖xik (tk)− x̃ik (tk)‖

2] ≤ σ2. (12)

Assumptions (A1) and (A2) are typical in convergence analysis of de-
scent algorithms; see e.g. [8, Ch. 1.2]. They are satisfied by the exam-
ples discussed in Sections 2.1. Assumption (A3) states that activations
occur at random times and that all agents are equally likely to become
active in any given time interval. This assumption is also common; see,
e.g., [6]. Among other possibilities it can be satisfied if all agents have
an activation clock based on independent exponential waiting times with
equal means. This is more a matter of simplifying discussion than a fun-
damental requirement. It can be substituted by laxer conditions as we



discuss in Remark 1. Assumption (A4) bounds the average irrational-
ity of each agent by bounding the deviation from the rational decision
(3). We emphasize that this bound holds on a mean square sense. It is
possible to have isolated actions that are arbitrarily bad. Our results are
parametric on the irrationality bound σ2. As time increases the optimal-
ity gap Fk of the global network behavior approaches a neighborhood of
zero whose size is determined by the irrationality bound σ2.

The following result characterizes the convergence behavior of se-
quence of heuristic rational updates with respect to optimality.

Theorem 1 Consider the heuristic rational sequence of iterates x(tk)
such that at time tk agent ik updates her local variables xi(tk) accord-
ing to a heuristic rational update [cf. Definition 1] with corresponding
optimality gaps Fk [cf. (7)]. Define the best optimality gap by time tk
as F best

k := minl∈[0,k] Fl. If assumptions (A1)-(A4) hold, it follows that

lim
k→∞

F best
k ≤ Mσ2

2β
, a.s. (13)

i.e. the optimality gap becomes smaller than Mσ2/2β at least once for
almost all realizations.
According to Theorem 1 it holds that for almost all realizations the op-
timality gap Fk approaches or becomes smaller than σ2M/2β at least
once as k grows. Theorem 1 also implies that this happens infinitely of-
ten. Indeed, if at given time k0 we have Fk0 > σ2M/2β a simple time
shift in Theorem 1 permits concluding that there exists a future time k at
which Fk ≤ σ2M/2β.

For Fk to become small we need to have the current network con-
figuration x(k) close to the optimal configuration x∗. Consequently,
Theorem 1 implies that x(k) enters into a neighborhood of the opti-
mal configuration infinitely often. The volume of this neighborhood in-
creases with increasing mean squared error of the heuristic rule σ2, in-
creasing Lipschitz constant M , or decreasing condition number β. The
condition number β := m/(MN) is small for functions f(x) having
m�M corresponding to ill conditioned functions with elongated level
sets. Therefore, the dependence on β captures the difficulty of minimiz-
ing the cost f(x). The constant M is of little consequence as it plays
the role of a normalizing constant. If we multiply the function f(x)
with a constant, both, the optimality gaps Fk and the Lipschitz constant
M are multiplied by the same constant. The dependence on the mean
squared error σ2 captures the increase in global suboptimality as agents’
behaviors become more erratic.

If the optimality gap Fk approaches a small value infinitely often
but can stray away from it, the question arises of what the process’s
behavior is between visits to the optimality neighborhood. We answer
this question in the following section after the following remark.
Remark 1 Results in this section follow with slight modifications when
the assumption that all agents are equally likely to become active is re-
laxed to the assumption that all agents have possibly different but strictly
positive probabilities of becoming active. This less restrictive assump-
tion still ensures that when the configuration x(t) is not optimal there is
always a positive probability of the rational rule descending towards the
optimum.

4. EXCURSIONS FROM NEAR OPTIMALITY

Although Theorem 1 shows that the network state moves within a close
boundary of the optimal configuration almost surely and infinitely often,
it does not claim a guarantee on staying close to the optimal value. In
fact, it is easy to see that in some particular examples the process Fk is
almost sure to move out of the optimality neighborhood Fk ≤Mσ2/2β
and even become arbitrarily bad with small but nonzero probability. This
may happen in the unlikely but not impossible situation in which the
variations in the heuristic rational rule cancel out the intended drive to-
wards optimality. In this section, we derive an exponential probability
bound on these excursions from optimality. The bound shows that while

arbitrarily bad excursions may be possible they happen with exponen-
tially small probability.

To formally define excursions away from the optimality neighbor-
hood, suppose that at given iteration k, the optimality gap is Fk =
(1 + ρ)Mσ2/2β, i.e., larger than the neighborhood border by a fac-
tor ρ > 0. Further consider a given value γ > Fk. We define excursion
as the trajectory Fk, Fk+1, . . . , Fk+L of the optimality gap until the pro-
cess returns to a value Fk+L < Fk smaller than the given gap Fk from
which the excursion started. Notice that L is a random stopping time
given by L = minl>0

(
Fk+l < Fk

)
. In particular, we are interested

in the worst value F †k = max(Fk, Fk+1, . . . , Fk+L) reached during the
excursion. In formal terms we define F †k as

F †k := max
l≥0

(
Fk+l, for l ≤ min

j>0

(
Fk+j < Fk

))
. (14)

Our goal here is to determine the probability P
(
F †k ≥ γ

)
that the worst

value attained during the excursion exceeds the given γ. To bound
the probability P

(
F †k ≥ γ

)
we need the following additional assump-

tion.
(A5) Bounded Increments. The difference on optimality gaps between
successive iterations is almost surely bounded by a finite constant κ > 0,
i.e., for all times k we have that

P
(
|Fk+1 − Fk| ≤ κ

∣∣Fk) = 1. (15)

A particular case in which Assumption (A5) is satisfied is when the
functions fij(xi, xj) are bounded for all feasible values xi ∈ Xi and
xj ∈ Xj . Assumption (A5) can be alternatively satisfied if the differ-
ences ‖xik (tk) − x̃ik (tk)‖ between rational and heuristic rational ac-
tions are almost surely bounded. This latter condition is more stringent
than the finite variance requirement of Assumption (A4). For the opinion
propagation scenario in Section 2.1, the bound in (15) is the maximum
number of neighbors, i.e., κ = maxi(Ni). This corresponds to the most
connected agent flipping its opinion from −1 to 1.

The exponential bound on P
(
F †k ≥ γ

)
is stated in the following

theorem.

Theorem 2 Consider a process of heuristic rational updates x(tk) =
{xi(tk)}i∈V [cf. Definition 1] and the associated process of optimality
gaps Fk [cf. (7)]. Assume that at time k the value of Fk exceeds the
optimality neighborhood of Theorem 1 by a factor ρ > 0, i.e., Fk =
(1+ρ)Mσ2/2β, and let F †k be the worst optimality gap achieved during
the subsequent excursion as defined in (14). If assumptions (A1)-(A5)
hold, then, for arbitrary given constant γ we have

P
(
F †k ≥ γ

∣∣Fk) ≤ e
−c(γ−Fk), (16)

with c = 2ρMσ2/[(ρMσ2)2 + κ2].

According to Theorem 2 the probability of F †k being larger than
some arbitrary constant γ decreases exponentially. This is a bound on
the worst optimality gap attained during the process starting at a level set
Fk = (1 + ρ)Mσ2/2β and ending at or below the starting level set Fk.
This result provides a way to characterize process behavior outside the
convergence region. The exponential bound given by (16) is dependent
on a scaling coefficient c. Scaling coefficient c is inversely proportional
with the bound on excursion probability. Accordingly, an increase in
any of the constants σ2, κ, M or ρ decreases scaling coefficient c push-
ing excursion probability bound (16) up. The effect of increase in mean
squared error σ2 would imply decrease in predictability of individual
actions possibly deteriorating optimality gap. Increment bound κ given
in (A5) represents the maximum possible change in optimality gap be-
tween subsequent steps. If the increment bound κ is larger, the process
can jump to a larger optimality gap in one step. In the extreme case that
the process can possibly have infinite increments, the excursion bound
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Fig. 1. Example network connectivity for opinion propagation in so-
cial networks. A total of N = 100 agents are randomly placed on a
100unit × 100unit square. Connections are drawn between agents situ-
ated less than 20 units apart. Two stubborn agents in the set S = {1, 2}
are marked with dotted squares. The remaining nodes are compliant and
attempt to minimize a measure of network discordance. Color encodes
opinions at time t = 50.
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Fig. 2. Agent opinions as a function of time for the network in Fig. 1.
Lines represent the path xi(t) of each agent’s opinion up until time t =
50. Three clusters emerge corresponding to strong support for stubborn
agents’ opinion x1(t) = 1 and x2(t) = −1 and weak support for either
stubborn agent. Seven agents who do not belong to any of the clusters
are excluded.

probability becomes the trivial value of 1. Lipschitz constant M is a
property of the objective function and will be large for ill conditioned
functions with elongated level sets. Constant ρ indicates how far away
F †k is at the start of the process from near optimality region. Scaling
coefficient decreases linearly as ρ grows but at the same time constant γ
and Fk has to grow in parallel canceling the effect of ρ on (16).

Next, we give numerical examples for an opinion propagation sce-
nario in which agents are heuristic rational rule decision makers.

5. SIMULATION

Consider the model of opinion propagation with stubborn agents pre-
sented in Section 2.1. We generate network connectivity using a geomet-
ric model. We drop a group of N = 100 agents on a 100unit×100unit
two dimensional field. The coordinates ri of user i are chosen inside
this square uniformly at random. The neighborhood set of agent i con-
sists of all agents j positioned within a cut-off distance d = 20unit of
ri, i.e., n(i) = {j : ‖ri − rj‖ ≤ d, j 6= i}. Fig. 1 shows network
structure in which lines indicate connections between agents. There are

two stubborn agents in the set S = {1, 2} marked with dotted squares
at locations r1 = (67, 79) and r2 = (20, 3). Stubborn agents have set
extreme opinions x1(t) = 1 and x2(t) = −1. The remaining agents
i ∈ V/S are compliant. They start with a random opinion uniformly
drawn from [−1, 1]. We assume agents become active independently of
each other and that times between activations of user i are exponentially
distributed with parameter µ = 1. Opinions are updated using the ra-
tional action in (8) superimposed with zero mean noise. The noise is
chosen as uniformly distributed in [−α, α] with α = 0.1.

The evolution of individual opinions during t = 50 time units is
presented in Fig. 2. With the chosen rate of activation µ = 1 this
corresponds to an average of 50 activations per agent. The emergence
of three opinion clusters is clear after around t = 10. Two of these
clusters settle on opinions between the intervals 0.5 < xi(50) < 0.85
and −0.85 < xi(50) < −0.5 corresponding to strong support for the
opinion of agents 1 and 2, respectively. The third one clusters settle
on opinions between the intervals −0.25 < xi(50) < 0.25 corre-
sponding to weak support for agent 1 or 2. Only seven agents settle
into intermediate opinions not belonging to any of these clusters with-
out themselves clustering around a particular opinion. Opinions xi(50)
are also color-coded in Fig. 1. It is noticeable that agents in the clus-
ters with strong support for either opinion are in close proximity of the
corresponding stubborn agent. Strong supporters of agent 1, i.e., those
in the cluster {i : 0.5 < xi(50) < 0.85}, are located in the upper-
right quadrant. Strong supporters of agent 2, i.e, those in the cluster
{i : −0.85 < xi(50) < −0.5}, are located in the lower-left quad-
rant. Weak supporters of either agent are located in either upper-left or
lower-right quadrant. This outcome is based on how the specific network
structure facilitates the propagation of opinions.

6. CONCLUSION

We considered heuristic rational rules (cf. Definition 1) as a more re-
alistic way to represent agent behavior within the context of social net-
works. We formulated social network scenarios as network optimization
problems with global cost functions that are sum of local nonlinear cost
functions. We presented results on the convergence and excursion be-
havior of heuristic rational rule with random activation of agents. Our
numerical example considered an opinion propagation model.
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